Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts.
نویسندگان
چکیده
The use of cationic liposomes as nonviral vehicles for the delivery of therapeutic molecules is becoming increasingly prevalent in the field of gene therapy. We have previously demonstrated that the use of the transferrin ligand (Tf) to target a cationic liposome delivery system resulted in a significant increase in the transfection efficiency of the complex [Xu, L., Pirollo, K.F., and Chang, E.H. (1997). Hum. Gene Ther. 8, 467-475]. Delivery of wild-type (wt) p53 to a radiation-resistant squamous cell carcinoma of the head and neck (SCCHN) cell line via this ligand-targeted, liposome complex was also able to revert the radiation resistant phenotype of these cells in vitro. Here we optimized the Tf/liposome/DNA ratio of the complex (LipT) for maximum tumor cell targeting, even in the presence of serum. The efficient reestablishment of wtp53 function in these SCCHN tumor cells in vitro, via the LipT complex, restored the apoptotic pathway, resulting in a significant increase in radiation-induced apoptosis that was directly proportional to the level of exogenous wtp53 in the tumor cells. More significantly, intravenous administration of LipT-p53 markedly sensitized established SCCHN nude mouse xenograft tumors to radiotherapy. The combination of systemic LipT-p53 gene therapy and radiation resulted in complete tumor regression and inhibition of their recurrence even 6 months after the end of all treatment. These results indicate that this tumor-specific, ligand-liposome delivery system for p53 gene therapy, when used in concert with conventional radiotherapy, can provide a new and more effective means of cancer treatment.
منابع مشابه
p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome.
Gene delivery via transferrin receptors, which are highly expressed by cancer cells, can be used to enhance the effectiveness of gene therapy for cancer. In this study, we examined the efficacy of p53 gene therapy in human osteosarcoma (HOSM-1) cells derived from the oral cavity using a cationic liposome supplemented with transferrin. HOSM-1 cells were exposed to transferrin-liposome-p53 in vit...
متن کاملSynergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells
Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...
متن کاملSystemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.
BACKGROUND A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS A cationic immunolipoplex incorpora...
متن کاملp53 Tumor Suppressor Gene Therapy for Cancer
Gene therapy has the potential to provide cancer treatments based on novel mechanisms of action with potentially low toxicities. This therapy may provide more effective control of locoregional recurrence in diseases like non–small-cell lung cancer (NSCLC) as well as systemic control of micrometastases. Despite current limitations, retroviral and adenoviral vectors can, in certain circumstances,...
متن کاملOptimum neutron energy simulation in treatment of head and neck cancer at different depths in the BNCT method
Introduction: Recently head and neck cancer has pay attention to many researchers. Its therapeutic methods include surgery, chemotherapy, radiotherapy and Boron neutron capture therapy (BNCT). BNCT is better than conventional radiotherapy because it targets the tumor cell. This method involves two steps of infusion of stable 10B and then neutron radiation with a suitable intens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human gene therapy
دوره 10 18 شماره
صفحات -
تاریخ انتشار 1999